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Abstract : The Isotropic-symmetric and orientational co-relations for hard convex bodies (HCB) model, exhibit simpler
behavior in the surface-to-surface than in the more customary centre-to-center co-ordinate representation. The radial
wave equation of a HCB’s (hard convex bodies) model coordinate system has been described and expressed for the pair
intermolecular potential specified in terms of the support function h(x) for the calculation of the phase shifts. The
Intermolecular potential for HCB’S reduces to hard sphere (HS) Intermolecular potential for major and minor axis ratio
equal to one and has exactly the same surface-to- surface distribution as for HCB’s. Thus, the theoretical work supporting
the concept that the HCB model would prove to be as valuable as hard sphere model as reference fluid for real fluids.
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INTRODUCTION

The phase shifts is the solution of the radial wave
equation. The expression for the radial wave equation of a
HCB Model co-ordinate system has been described first
and expressed for the pair intermolecular potential specified
in terms of the support function h(x) and surface -to-
surface co-ordinate representation. The Transport
properties of the fluid for HCB model may be calculated if
one knows the cross section parameter of the transport
function. Phase shift is known for HCB model and cross
- section has also been expressed in terms of the phase
shift, so the cross- section of different transport parameter
may be calculated

LOGY

The support function h(x) is defined as the projection.

h(x) = 1A<£)— —(1)
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A .
Where ), is the vector extending from the centre to
the point on the surface to the minimum separation

5 = kh(x) +[1 —ﬁﬁj.éh'(X) -

X:IA(.;zcosﬁ——@)

Where x defines the orientation of HCB’S and the
unit vectors 4 is the director axis. When x=cos 0=1 the
orientation is along semi-major axis “a”, when x=cosq =0
the orientation is along semi-minor axis “b”.

For the HCB’S with semi-major axis “a” and the
semi-minor axis “b”, the support function is

Where - (ajz 1
b

And h'(X)= % = bh&;(

h(X) = b[t+ e X2]"

— =1 reduces to a
(or a=b), and the intermolecular potential for HCB’S

The support function h(x) for

reduces to hard sphere, Intermolecular potential which
has exactly the same surface - to -surface distribution as
the HCB’S
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The center-to-center distance r(k) is

;(k): k +p(lA(j—p2(— k)

To avoid the over lapping situation the expression for
has been F(;Q) Transformed to

A

r(k)= k[k + h(X)]
With h(x) = h(x4) + h(xo)
In case of spherical molecules r(;A() reduces to

r=atk or b+k

In order to make calculations of phase shifts it is
necessary to specify the intermolecular potential function
in the radial wave equation.

The expression for y2y in terms of HCB’S co-
ordinate system is

1 0 > 0 1 0
W&{(}I(X)*—K) g}*'mﬁ W viw (1)
8 1 d
(sm H%J*—Wa@z

And,
The radial wave equation may be written in the reduced
form

%(K*W(K))"’{/ 2 +1A6:22 [Kl*lz - Kl*f»j_ (1/_5/1:32 :|.(K*I/I(K)):0——(5)
we K jec _m
Where K*= h(x)'J J h (x) and U >

m is the mass of the particle, p is the reduced mass
andis ,= "™ Here m| =m, for identical particle.

m + m,
*

A*= L
h(x)\2Eu
h

A¥= .
or, h(xWEm -152 reduced quantum parameter.

The reduced quantum mechanical parameter
A*=

L . . .
a(mE) | when x = cos® = 1, the orientation is
along semi - major axis ‘a’ and
h

Av= T _ _ . .
b(mE); When x = cos® = 0, the orientation is

along semi-Minor axis ‘b’.

The asymptotic solution of the radial wave equation
for real(interacting) and ideal (non-interacting) pairs of
molecules are sinusoidal and differ only in the phase of

P2
PRy

1y, Jowrnal of Lif Seronces
the sine functions, the difference being the phase shifts,n,
(J*). The phase shift depends upon the angular momentum
quantum number ¢ and the wave number of relative
motion.

The integral expression for phase shifts for the HCB’S
model may be written as

5

%T(HK*)%J LK),

\/E.J*EA*ZO 2

4
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Thus the effective molecular cross- section for all
types of encounter in He? is

3 1
Q(J *)= ZQ (J *)F>D + ZQ(J *)Bf

Where,
o 167 (1) +2)
Q(J )F.D NS ﬁ;d 2(2£+3) sin ( 142 77})
N 16 L+1N0+2) .
Q(J )B-E = 2 z ( s X * )Slnz( 42 _77/:)

B J *2 (=even 2(2/ +3)

The effective cross section for He* is given by
the expression Q(J*) g g only.

For % = 2, the cross - section have been
calculated both for major and minor axis for He* and He*
(table 1, 2, 3 & 4). The graphs for cross section of Helium
illustrate the diffraction effects on encountered in transport
phenomena are shown in figure 1, 2, 3 & 4.

The cross section for HS model (k, 6, ¢) have also
been calculated table 5 and 6 and their graphs are shown
in figure 5 and 6. This has been done for major axis only.
Because %= 1, here.

Table - 1
Cross - section of [He® along major axis

J* R(J*) =
0.5 216.863
0.6 134.604
0.7 88.284
0.8 60.252
0.9 42.767

1 30.652
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J* R@*) = Table - 3
1.1 23.801 Cross - section of He* along minor axis
1.2 16.801 I RU =
1.3 11.541 0.5 266.03
0.6 158.718
14 8.527 0.7 100.481
1.5 6.994 0.8 68.832
1.6 5.907 0.9 50.597
1.7 4.797 1 39.751
8 363 1.1 34.438
1.2 31.479
19 2.535 1.3 30.112
2 1.671 1.4 29.174
1.5 27.227
Table - 2 1.6 22.445
Cross - section of He* along major axis 1.7 16.232
J#= QU*) 1.8 12.66
0.2 483.451 19 11.076
0.3 1.291.103 2 0888
0.4 477.754 Table - 4
0.5 349.773 Cross - section of He* along minor axis
0.6 286.841 J#= QU*)
0.7 236.564 0.1 320.817
0.8 191.014 0.2 339.975
0.3 406.502
0.9 148.295 02 TR
! 103.586 0.5 547.205
1.1 70.226 0.6 365.879
1.2 36.801 0.7 282.426
13 15915 0.8 230.03
v S910 0.9 190.105
1 156.317
13 1.976 11 132.703
1.6 0.578 1.2 111.273
1.7 0.136 1.3 92.892
1.8 0.024 1.4 73.535
9 0.0 1.5 48.566
1.6 22.388
2 0.19
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Table - 5 Cross-Section of He® along major axis
Cross - section of He? for HS Model 2000 I
J* R(J*) =
0.5 415.88
0.6 270.155
0.7 189.99 R (J*) 10001~ a
0.8 142.521
0.9 112.387
1 92.059
1.1 77.631 0
1.2 66.95 0 1
1.3 58.759 . "
Figure -1
1.4 52.288
1.5 47.04 Cross-Section of He* along major axis
1.6 42.689 2000 I
1.7 39.007
1.8 35.837
1.9 33.065
2 30.609 QI*) 1000f
Table - 6
Cross - section of He* for HS Model
Jr= QU™) =
0.1 39.611 o i
0.2 39.02 J*
0.3 38.408 Figure -2
0.4 37.761 ] . .
Cross-Section of He® along minor axis
0.5 37.069
0.6 36.32 A0 '
0.7 35.526
0.8 34.67
0.9 33.757
1 32.787 R0 7
1.1 31.765
1.2 30.693
1.3 29.579
1.4 28.43 0 o i
1.5 27.254 I
1.6 26.06 Figure -3
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Cross-Section of He* along minor axis
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RESULT AND DISCUSSION

These results for the cross section have been plotted
in figures for comparison also. The most important
difference result from the different behavior of h, for
small J* for the case of He® and He*. Q (J*) for He*
becomes finite for minor axis and infinite for major axis
where as Q (J*) for He3 approaches to infinite for J* —
0 for HCB model case. This behavior repeated in case of
HS model for (k, 6, ¢) co-ordinate representation for
both He*and He’.

CONCLUSION

The theoretical work supporting the concept that the
HCB model would prove to be as valuable as hard sphere
model as a reference fluid for real fluids. Thus the proposed
radial wave equation based on the surface-to-surface
distance K and the potential defined in terms of the support
function h(x) simplifies the determination of phase shift
and cross-section for HCB’S model. The calculated cross-
section values of He* and He® may be used for the
calculation of the transport properties
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